313 research outputs found

    Cosmological Information from Lensed CMB Power Spectra

    Full text link
    Gravitational lensing distorts the cosmic microwave background (CMB) temperature and polarization fields and encodes valuable information on distances and growth rates at intermediate redshifts into the lensed power spectra. The non-Gaussian bandpower covariance induced by the lenses is negligible to l=2000 for all but the B polarization field where it increases the net variance by up to a factor of 10 and favors an observing strategy with 3 times more area than if it were Gaussian. To quantify the cosmological information, we introduce two lensing observables, characterizing nearly all of the information, which simplify the study of non-Gaussian impact, parameter degeneracies, dark energy models, and complementarity with other cosmological probes. Information on the intermediate redshift parameters rapidly becomes limited by constraints on the cold dark matter density and initial amplitude of fluctuations as observations improve. Extraction of this information requires deep polarization measurements on only 5-10% of the sky, and can improve Planck lensing constraints by a factor of ~2-3 on any one of the parameters w_0, w_a, Omega_K, sum(m_nu) with the others fixed. Sensitivity to the curvature and neutrino mass are the highest due to the high redshift weight of CMB lensing but degeneracies between the parameters must be broken externally.Comment: 19 pages, 16 figures, submitted to PR

    Precision Cosmology and the Density of Baryons in the Universe

    Get PDF
    Big-bang Nucleosynthesis (BBN) and Cosmic Microwave Background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the longstanding conclusion from BBN that baryons constitute a small fraction of matter in the Universe. We clarify precisely what the two methods determine, and point out that differing values for the baryon density need not indicate inconsistency if the entropy has changed since BBN. Such an entropy change has a clear signature in the CMB anisotropy

    Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?

    Full text link
    We find that the viability of a cosmological model that incorporates 2 sterile neutrinos with masses around 1 eV each, as favored by global neutrino oscillation analyses including short baseline results, is significantly dependent on the choice of datasets included in the analysis and the ability to control the systematic uncertainties associated with these datasets. Our analysis includes a variety of cosmological probes including the cosmic microwave background (WMAP7+SPT), Hubble constant (HST), galaxy power spectrum (SDSS-DR7), and supernova distances (SDSS and Union2 compilations). In the joint observational analysis, our sterile neutrino model is equally favored as a LCDM model when using the MLCS light curve fitter for the supernova measurements, and strongly disfavored by the data at \Delta\chi^2 ~ 18 when using the SALT2 fitter. When excluding the supernova measurements, the sterile neutrino model is disfavored by the other datasets at \Delta\chi^2 ~ 12, and at best becomes mildly disfavored at \Delta\chi^2 ~ 3 when allowing for curvature, evolving dark energy, additional relativistic species, running of the spectral index, and freedom in the primordial helium abundance. No single additional parameter accounts for most of this effect. Therefore, if laboratory experiments continue to favor a scenario with roughly eV mass sterile neutrinos, and if this becomes decisively disfavored by cosmology, then a more exotic cosmological model than explored here may become necessary.Comment: 10 pages, 3 figures. Minor refinements, reflects version accepted for publication in PR

    Strong Evidence that the Galactic Bulge is Shining in Gamma Rays

    Get PDF
    There is growing evidence that the Galactic Center Excess identified in the Fermi\textit{Fermi}-LAT gamma-ray data arises from a population of faint astrophysical sources. We provide compelling supporting evidence by showing that the morphology of the excess traces the stellar over-density of the Galactic bulge. By adopting a template of the bulge stars obtained from a triaxial 3D fit to the diffuse near-infrared emission, we show that it is detected at high significance. The significance deteriorates when either the position or the orientation of the template is artificially shifted, supporting the correlation of the gamma-ray data with the Galactic bulge. In deriving these results, we have used more sophisticated templates at low-latitudes for the Fermi\textit{Fermi} bubbles compared to previous work and the three-dimensional Inverse Compton (IC) maps recently released by the GALPROP{\tt GALPROP} team. Our results provide strong constraints on Millisecond Pulsar (MSP) formation scenarios proposed to explain the excess. We find that an admixture formation\textit{admixture formation} scenario, in which some of the relevant binaries are primordial\textit{primordial} and the rest are formed dynamically\textit{dynamically}, is preferred over a primordial-only formation scenario at 7.6σ7.6\sigma confidence level. Our detailed morphological analysis also disfavors models of the disrupted globular clusters scenario that predict a spherically symmetric distribution of MSPs in the Galactic bulge. For the first time, we report evidence of a high energy tail in the nuclear bulge spectrum that could be the result of IC emission from electrons and positrons injected by a population of MSPs and star formation activity from the same site.Comment: 21 pages, 13 figures, V2: Minor changes to match submitted version, V3: matches JCAP published versio
    • …
    corecore